这就是“复杂指令集”和“精简指令集”的逻辑区别。可能有人说,明显是精简指令集好啊,但是我们不好去判断它们之间到底谁好谁坏,因为目前他们两种指令集都在蓬勃发展,而且都很成功——X86是复杂指令集(CISC)的代表,而ARM则是精简指令集(RISC)的代表,甚至ARM的名字就直接表明了它的技术:Advanced RISC Machine——高级RISC机。
到了这里你就应该明白为什么RISC和CISC之间不好直接比较性能了,因为它们之间的设计思路差异太大。这样的思路导致了CISC和RISC分道扬镳——前者更加专注于高性能但同时高功耗的实现,而后者则专注于小尺寸低功耗领域。实际上也有很多事情CISC更加合适,而另外一些事情则是RISC更加合适,比如在执行高密度的运算任务的时候CISC就更具备优势,而在执行简单重复劳动的时候RISC就能占到上风,比如假设我们是在举办吃饭大赛,那么CISC只需要不停的喊“吃饭吃饭吃饭”就行了,而RISC则要一遍一遍重复吃饭流程,负责喊话的人如果嘴巴不够快(即内存带宽不够大),那么RISC就很难吃的过CISC。但是如果我们只是要两个人把饭舀出来,那么CISC就麻烦得多,因为CISC里没有这么简单的舀饭动作,而RISC就只需要不停喊“舀饭舀饭舀饭”就OK。
这就是CISC和RISC之间的区别。但是在实际情况中问题要比这复杂许许多多,因为各个阵营的设计者都想要提升自家架构的性能。这里面最普遍的就是所谓的“发射”概念。什么叫发射?发射就是同时可以执行多少指令的意思,例如双发射就意味着CPU可以同时拾取两条指令,三发射则自然就是三条了。现代高级处理器已经很少有单发射的实现,例如Cortex A8和A9都是双发射的RISC,而Cortex A15则是三发射。ATOM是双发射CISC,Core系列甚至做到了四发射——这个方面大家倒是不相上下,但是不要忘了CISC的指令更加复杂,也就意味着指令更加强大,还是吃饭的例子,CISC只需要1个指令,而RISC需要5个,那么在内存带宽相同的情况下,CISC能达到的性能是要超过RISC的(就吃饭而言是5倍),而实际中CISC的Core i处理器内存带宽已经超过了100GB/s,而ARM还在为10GB/s而苦苦奋斗,一个更加吃带宽的架构,带宽却只有别人的十分之一,性能自然会受到非常大的制约。为什么说ARM和X86不好比,这也是很重要的一个原因,因为不同的应用对带宽需求是不同的。一旦遇到带宽瓶颈,哪怕ARM处理器已经达到了很高的运算性能,实际上根本发挥不出来,自然也就会落败了。
嵌入式安装指的是不需要螺丝但通过卡簧或其他卡式回弹片直接卡到产品开孔位置。
这是由嵌入式系统的功耗约束特点决定的
即使是在诸如物联网应用的无线连接这种主导功耗的事件中,让尽可能多的进程自主运行,也可大大提高电池寿命。降低功耗一直是微控器(MCU)市场的一个主要关注点。超低功耗MCU现在可以大大降低工作模式和深度睡眠模式下的功耗。这种变化的效果是显而易见的,它大大提高了我们日常嵌入式应用中的电池寿命,并且提供了在未来使用能量收集的可能性。
然而,要基于新型MCU降低功耗,开发人员必须考虑到许多因素,对此Silicon Labs特别撰写一篇技术文章:“以0 MIPS运行你的嵌入式系统”,帮助开发人员了解如何利用新型MCU中外设的自主运行,通过更接近以“0”MIPS运行,来实现数据手册中所承诺的低功耗。
对于在功耗敏感型物联网(IoT)应用中所使用的新型MCU和无线MCU(WMCU)来说,执行代码时的功耗已经明显下降,甚至达到40μA/ MHz以下。使用这些低功耗规格,您可能会想知道为什么我们需要睡眠模式,为什么不以500 kHz运行您的代码来实现20μA的电流消耗,并且允许您的应用使用电池运行10年?其实事情并不是这么简单的。
睡眠模式下的功耗在过去几年中也有显著的改善。我们现在可以看到深度睡眠模式下的功耗低于2μA,而一些睡眠模式下的功耗甚至低于50 nA。您可能会觉得拥有这些模式设计出来的系统功耗自然很低,然而事实并非如此,应用能否利用睡眠模式才是关键。
顶部